
Project: Red or Green

Aim:

To predict the next color will be click by the user

Background:

To make machine predict like any intelligent human being that machine need to

be train or to have knowledge that able to think like human being. As The goal of

artificial intelligence (AI) as a science is to make machines do things that would

require is to make machines do things that would require intelligence if done by

humans.

There are numerous of method/ways to make machine think like human. The

most popular way is Neural network. Neural network is based on the system of

human biological neural network (human brain).

The brain consists of a densely interconnected set of nerve cells, or basic

information-processing units, called neurons with the connections, synapses

between them. A neuron consists of a cell body, soma, a number of fibers called

dendrites, and a single long fiber called axon.

Figure 1: Biological neural network

For neural network in machine, they have the same structure except instead of

using biologically view, we use blocks, lines, numbers, mathematically view on

those units.

Figure 2: Neural network representation between biological and artificial

Design:

For our case, our neural network looks like this: (To know how this diagram

designed, read appendix)

Figure 3: Block diagram of Red-or-Green neural network

Setup:

On STEMSEL board, put red LED in C4, and green LED in C5.

Figure 4: STEMSEL board with red and green LED

On runlinc control page, assign “Red” in C4, and “Green” in C5.

Codes:

HTML:

<div>
 <h1>Red or Green</h1>
 <button style="background-color: rgb(255, 103, 103)" onclick="play('red')">Red</button>
 <button style="background-color: rgb(118, 255, 118)"
onclick="play('green')">Green</button>
 <button onclick="play('default')">Reset</button>
</div>

<laber>Sequence: </laber><output id="seq">-----</output>

<laber>Predict next color will be </laber><output id="predict">-----</output>

Javascript:

var n = 8;
 var sequence = [];
 var count = 0;

 function play(colour) {
 if (sequence.length > 7) {
 sequence.shift();
 }
 switch (colour) {
 case 'red':
 sequence.push("1");
 calculation();
 break;

 case 'green':
 sequence.push("0");
 calculation();
 break;

 default:
 weight = 0;
 sequence = [];
 document.getElementById("seq").innerHTML = "-----";
 document.getElementById("predict").innerHTML = "-----";
 turnOff(Red);
 turnOff(Green);

 break;
 }
 }

 //Basic machine learning
 function calculation() {
 var input = [];
 var weightEach = [];
 var weight = 0;
 var SUM = 0;
 var DEC = 0;
 for (var i = 0; i < sequence.length; i++) {
 if (sequence[i] == 0) {
 input[i] = 0.1;
 }
 if (sequence[i] == 1) {
 input[i] = 1;
 count++;
 }
 SUM = SUM + sequence[i] * Math.pow(10, 7 - i);
 DEC = SUM.toString(10);

 weightEach[i] = (input[i] / ((1 / DEC) + n));

 weight += weightEach[i];
 }
 document.getElementById("seq").innerHTML = sequence.join(" ");
 prediction(weight);
 }

 //AI facts method
 function prediction(pred) {
 if (sequence.length < 7) {
 document.getElementById("predict").innerHTML = "-----";
 turnOff(Red);
 turnOff(Green);
 } else {
 if (pred >= 0.5499999931763907) {
 document.getElementById("predict").innerHTML = "red";
 turnOn(Red);
 turnOff(Green);
 }
 if (pred <= 0.5374999333107895) {
 document.getElementById("predict").innerHTML = "green";

 turnOff(Red);
 turnOn(Green);
 }
 if (pred == 0.6624999923295869) {
 document.getElementById("predict").innerHTML = "green";
 turnOff(Red);
 turnOn(Green);
 }
 if (pred == 0.41249951870961277) {
 document.getElementById("predict").innerHTML = "red";
 turnOn(Red);
 turnOff(Green);
 }
 }
 }

Appendix:

The general architecture of an artificial neural network:

Figure A1: Architecture of an artificial neural network

To put it into analogy between biological and artificial neural networks, we have:

• Some as Neuron

• Dendrite as Input

• Axon as Output

• Synapse as Weight

And to simplify artificial neural network as a computing element, we have

Figure A2: Diagram of a neuron

Before designing our block diagram, figure 3, we need to know our situations:

• 2 inputs with individual weight

• Total of 256 combination in our sequence, from 00000000 to 11111111 (8 bits)

• Each of the combination need to have difference weights

• Only record 8 bits

Let’s start with 2 inputs with 2 bits. The possible combination of 2 bits, 0 and 1 are:

Decimal A B

0 0 0

1 0 1

2 1 0

3 1 1

Table 1: Possible combination of 2 bits

Therefore, in neural network:

Figure A3: Neural network for 2 bits

Same method with 4 bits and 8 bits:

Figure A4: Neural network for 4 bits

Figure A5: Neural network for 8 bits

Here comes the trick, we could split 8 bits into 4 parts, and it will make things easier. Example:

 AB (first part) CD (second part) EF (third part) FG (forth part)

00000000

00 00

00

00

00000001 01

00000010 10

00000011 11

00000100

01

00

00000101 01

00000110 10

.

.

.

11111111 11 11 11 11

With this split, we could see each part are the combination of 2 bits and we can group them, and assign

number, k for the order of part to let machine know which part go first towards last part. Therefore:

Figure A6: 8 bits into 4 parts block diagram

Furthermore, we can split them from 4 to 2 parts, that mean k count from 0 to 7.

 A B C D E F G H

00000000 0 0 0 0 0 0 0 0

00000001 0 0 0 0 0 0 0 1

00000010 0 0 0 0 0 0 1 0

00000011 0 0 0 0 0 0 1 1

00000100 0 0 0 0 0 1 0 0

00000101 0 0 0 0 0 1 0 1

00000110 0 0 0 0 0 1 1 0

.

11111111 1 1 1 1 1 1 1 1

Finally, group them into a block, change computer to control, add user:

Figure 3: Block diagram of Red-or-Green neural network

